Znaiemo matematyku
Дякуємо за Ваш відгук.

Теорема Піфагора: основи

Теорема Піфагора дозволяє обчислити довжину третьої сторони прямокутного трикутника, якщо відомі довжини двох інших сторін:

  • Довжина гіпотенузи c = \sqrt{a^2 + b^2}. Якщо у прямокутному трикутнику довжини катетів 3 метри і 6 метрів, то гіпотенуза має довжину \sqrt{3^2+6^2} = \sqrt{9+36} = \sqrt{45} \doteq 6{,}41 метра.

  • Довжина катета a = \sqrt{c^2-b^2}. Якщо гіпотенуза трикутника має довжину 8 метрів, а один з катетів має довжину 4 метри, то другий катет має довжину \sqrt{8^2-4^2} = \sqrt{64-16} = \sqrt{48} \doteq 6{,}93 метра.

Піфагорові трійки – це три натуральних і цілих числа, які задовольняють рівність a^2+b^2=c^2, тобто трикутник з відповідними довжинами сторін є прямокутним. Типовим прикладом піфагорової трійки є (3, 4, 5): 3^2 + 4^2 = 9+16 = 25 = 5^2.

Інші приклади Піфагорових трійок: (5, 12, 13); (8, 15, 17); (7, 24, 25); (20, 21, 29); (9, 40, 41). До Піфагорових трійок належать також усі кратні їм трійки, наприклад: (6, 8, 10); (9, 12, 15); (10, 24, 26). Якщо ми запам’ятаємо деякі основні Піфагорові трійки, особливо найпростішу трійку (3, 4, 5), це може дуже полегшити обчислення.

Підсумок мені допоміг
Підсумок мені не допоміг

Переміщення

Переміщення карт на правильне місце. Просте управління, цікаві та оригінальні завдання.


Теорема Піфагора: основи  
Переглянути пояснення теми


Вибір

Швидке практикування шляхом вибору з двох варіантів.


Теорема Піфагора: основи  
Переглянути пояснення теми


Pexeso

Вправа на знаходження пар.


Теорема Піфагора: основи  
Переглянути пояснення теми


Письмова відповідь

Вправа, в якій ви набираєте відповідь на клавіатурі.


Теорема Піфагора: основи  
Переглянути пояснення теми


ЗВ’ЯЖІТЬСЯ З НАМИ

Дякуємо за ваше повідомлення, його було успішно відправлено.

Напишіть нам

Вам потрібна допомога?

Будь ласка, спочатку ознайомтеся з поширеними запитаннями:

Про що йдеться у повідомленні?

Повідомлення Зміст Управління Вхід до системи Ліцензія