Площа сектора круга

Площа сектора

Площу сектора з центральним кутом \alpha і радіусом r обчислюємо за формулою: \frac{\alpha}{360^{\circ}} \cdot \pi \cdot r^2

Приклади

  • Сектор на малюнку має площу: \frac{150^{\circ}}{360^{\circ}} \cdot \pi \cdot 3^2 = \frac{5}{12} \cdot \pi \cdot 9 = \frac{15}{4} \pi

  • Площа цілого кола (сектора з центральним кутом 360^{\circ}) дорівнює: \frac{360^{\circ}}{360^{\circ}} \cdot \pi \cdot r^2 = \pi \cdot r^2

Вибір

Швидке практикування шляхом вибору з двох варіантів.


Площа сектора круга  
Переглянути пояснення теми


Письмова відповідь

Вправа, в якій ви набираєте відповідь на клавіатурі.


Площа сектора круга  
Переглянути пояснення теми


ЗВ’ЯЖІТЬСЯ З НАМИ

Дякуємо за ваше повідомлення, його було успішно відправлено.

Напишіть нам

Вам потрібна допомога?

Будь ласка, спочатку ознайомтеся з інструкціями.

Будь ласка, не надсилайте запитання пов'язані з відповідями або пояснення послідовності розв'язання. Якщо ви сповіщаєте про помилку, вкажіть, будь ласка, у чому вона полягає та додайте скріншот.

Про що йдеться у повідомленні?

Повідомлення Сповістити про помилку Зміст Управління Вхід до системи Ліцензія