Перейти до вправи:
Переміщення
Перейти до теми:
Теорема Піфагора: основи
Розгорнути на весь екран
Тренуйтеся без обмежень

Ваша кількість відповідей на день обмежена. Для збільшення ліміту або отримати доступ до аккаунту з ліцензією, будь ласка, увійдіть в систему.

Увійти в систему
Переглянути підсумовування теми
FLC
Поділитися

QR-код

QR-код можна відсканувати, наприклад, за допомогою мобільного телефону, щоб перейти безпосередньо до цієї вправи або набору прикладів.

Код / коротка адреса

Трисимвольний код можна ввести в рядок пошуку, він також є частиною скороченої адреси.

Скопіюйте, клацнувши.

FLC

Теорема Піфагора: основи

Теорема Піфагора дозволяє обчислити довжину третьої сторони прямокутного трикутника, якщо відомі довжини двох інших сторін:

  • Довжина гіпотенузи c = \sqrt{a^2 + b^2}. Якщо у прямокутному трикутнику довжини катетів 3 метри і 6 метрів, то гіпотенуза має довжину \sqrt{3^2+6^2} = \sqrt{9+36} = \sqrt{45} \doteq 6{,}41 метра.

  • Довжина катета a = \sqrt{c^2-b^2}. Якщо гіпотенуза трикутника має довжину 8 метрів, а один з катетів має довжину 4 метри, то другий катет має довжину \sqrt{8^2-4^2} = \sqrt{64-16} = \sqrt{48} \doteq 6{,}93 метра.

Піфагорові трійки – це три натуральних і цілих числа, які задовольняють рівність a^2+b^2=c^2, тобто трикутник з відповідними довжинами сторін є прямокутним. Типовим прикладом піфагорової трійки є (3, 4, 5): 3^2 + 4^2 = 9+16 = 25 = 5^2.

Інші приклади Піфагорових трійок: (5, 12, 13); (8, 15, 17); (7, 24, 25); (20, 21, 29); (9, 40, 41). До Піфагорових трійок належать також усі кратні їм трійки, наприклад: (6, 8, 10); (9, 12, 15); (10, 24, 26). Якщо ми запам’ятаємо деякі основні Піфагорові трійки, особливо найпростішу трійку (3, 4, 5), це може дуже полегшити обчислення.

Закрити

Теорема Піфагора: основи (легке)

ОчиститиНе знаю ОцінитиРішенняНаступні  »

Вирішено:

ЗВ’ЯЗАТИСЯ З НАМИ

Дякуємо за ваше повідомлення, його було успішно відправлено.

Напишіть нам

Вам потрібна допомога?

Будь ласка, спочатку ознайомтеся з поширеними запитаннями:

Про що йдеться у повідомленні?

Повідомлення Зміст Управління Вхід до системи Ліцензія