Дроби та десяткові числа
Перетворення десяткового числа на звичайний дріб
Десяткове число множимо на число, кратне десяти так, щоб «позбутися» десяткової коми. Потім скорочуємо дріб (найбільшим спільним дільником), щоб отримати дріб у найпростішому вигляді. Приклади:
1{,}5 = 1{,}5\cdot \frac{10}{10} = \frac{1{,}5\cdot 10}{10} = \frac{15}{10} = \frac{3}{2}
1{,}25 = 1{,}25 \cdot \frac{100}{100} = \frac{1{,}25\cdot 100}{100} = \frac{125}{100} = \frac{5}{4}
Розрахунки можуть бути простішими, якщо запам’ятати деякі корисні перетворення, за допомогою яких можна вирішити й інші приклади:
Перетворення звичайного дробу на десяткове число
Значення дробу – це просто частка чисельника і знаменника. Тому дріб можна виразити як десяткове число, просто поділивши чисельник на знаменник (може бути корисним використовувати метод «ділення стовпчиком»). Приклади:
\frac{3}{4} = 3:4 = 0{,}75
\frac{6}{5} = 6:5 = 1{,}2
\frac{3}{20} = 3:20 = 0{,}15
Закрити